Specifications Table for EWAD-TZSRB

EWAD160TZSRB1 EWAD190TZSRB1 EWAD240TZSRB1 EWAD270TZSRB1 EWAD300TZSRB1 EWAD360TZSRB1 EWAD380TZSRB2 EWAD450TZSRB2 EWAD455TZSRB2 EWAD495TZSRB2 EWAD500TZSRB2 EWAD570TZSRB2 EWAD610TZSRB2 EWAD660TZSRB2 EWAD700TZSRB2 EWAD820TZSRB2 EWAD900TZSRB2 EWAD990TZSRB2 EWADC10TZSRB2 EWADC11TZSRB2
Sound pressure level Cooling Nom. dBA 67 68 68 68 69 70 70 70 70 70 70 70 70 71 73 73 73 73 73 73
Refrigerant charge Refrigerant charge-=-Per circuit-=-TCO2Eq TCO2Eq               42.2   48.6
Compressor Type   Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Driven vapour compression Inverter driven single screw compressor Driven vapour compression Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor
  Starting method   Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven   Inverter driven   Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven
  Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Weight Operation weight kg 2,186 2,217 2,287 2,501 2,560 2,921 4,402 4,424 4,424 4,675 4,675 4,961 5,250 5,259 5,529 7,247 7,347 7,702 7,980 8,273
  Unit kg 2,166 2,191 2,249 2,475 2,522 2,871 4,244 4,260 4,260 4,517 4,517 4,803 4,980 5,004 5,274 6,997 7,097 7,452 7,730 8,023
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
EER 2.995 2.874 2.835 2.989 2.817 2.954 2.81 2.759 2.759 2.846 2.846 2.856 2.795 2.742 2.796 3.229 3.043 3.016 3.018 2.973
ESEER               4.43   4.47
Refrigerant GWP                 1,430   1,430
  Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  Circuits Quantity                 2   2
  Charge kg 27 29 33 38 41 52 58 59 59 68 68 75 77 83 90 104 104 117 130 143
Cooling capacity Nom. kW 169.1 200.9 235.3 268.8 306 351.4 394 454.6 454.6 499.1 499.1 568.6 610.4 659 699.9 800 895 956 1,013 1,067
Water heat exchanger Water volume l               164   158
  Type                 Shell and tube   Shell and tube
Power input Cooling Nom. kW               164.8   175.4
Sound power level Cooling Nom. dBA 86 87 87 88 88 90 90 90 90 90 90 91 91 92 94 94 94 95 95 95
Dimensions Unit Width mm 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
    Depth mm 2,283 2,283 2,283 3,183 3,183 4,083 4,083 4,083 4,083 4,983 4,983 5,883 5,883 5,883 6,783 7,783 7,783 8,820 9,591 10,461
    Height mm 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,483 2,482 2,482 2,482 2,482 2,482
Capacity control Minimum capacity % 37 31 34 29 25 24 16 17 17 16 16 14 13 12 12 10 10 10 10 10
  Method                   Variable   Variable
Fan Air flow rate Nom. l/s               29,650   36,920
  Speed rpm               700   700
Compressor Starting method                 Inverter   Inverter
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage range Max. % 10 10 10 10 10 10 10   10   10 10 10 10 10 10 10 10 10 10
    Min. % -10 -10 -10 -10 -10 -10 -10   -10   -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Unit Max unit current for wires sizing A 141 156 174 187 239 247 313   349   368 374 479 483 488 568 637 692 750 813
  Starting current Max A 0 0 0 0 0 0 0   0   0 0 0 0 0 0 0 0 0 0
  Running current Cooling Nom. A 102 123 188 177 188 200 247   374   368 363 378 398 416 422 496 530 561 599
    Max A 130 149 160 187 220 246 298   320   350 374 439 466 486 523 585 635 688 745
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only
  (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
  (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
  (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options.
  (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
  (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data. (15) - All data are subject to change without notice. Please refer to the unit nameplate data.
  (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
  (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water (18) - Fluid: Water
  (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
Power input Cooling Nom. kW 56.48 69.9 82.99 89.94 108.6 118 140.2   164.8   175.4 199.1 218.4 240.3 250.3 247.8 294.1 316 335.6 358.9
IPLV 5.3 5.27 5.04 5.19 5.37 5.53 5.3   5.26   5.43 5.6 5.61 5.6 5.67 5.92 5.74 5.77 5.75 5.86
SEER 4.28 4.39 4.31 4.46 4.5 4.65 4.38   4.63   4.64 4.56 4.79 4.62 4.69 5.45 5.41 5.42 5.48 5.52
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white   Ivory white   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet   Galvanized and painted steel sheet   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Fan Quantity   4 4 4 6 6 8 8   8   10 12 12 12 14 16 16 18 20 22
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller   Direct propeller   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
Fan motor Drive   ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF   ON/OFF   ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
Operation range Air side Cooling Min. °CDB -18 -18 -18 -18 -18 -18 -18   -18   -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
      Max. °CDB 47 47 47 47 47 47 47   47   47 47 47 47 47 45 45 45 45 45
  Water side Evaporator Min. °CDB -8 -8 -8 -8 -8 -8 -8   -8   -8 -8 -8 -8 -8 -15 -15 -15 -15 -15
      Max. °CDB 18 18 18 18 18 18 18   18   18 18 18 18 18 20 20 20 20 20
Refrigerant GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430   1,430   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   1 1 1 1 1 1 2   2   2 2 2 2 2 2 2 2 2 2
Piping connections Evaporator water inlet/outlet (OD)   3" 3" 4" 4" 4" 4" 5"   5"   5" 5" 6” 6” 6” 168.3 mm 219.1mm 219.1mm 219.1mm 219.1mm