Specifications Table for EWAD-C-XS

EWAD760C-XS EWAD830C-XS EWAD890C-XS EWAD990C-XS EWADC10C-XS EWADC11C-XS EWADC12C-XS EWADC13C-XS EWADH14C-XS EWADH15C-XS EWADC16C-XS EWADC17C-XS EWADC18C-XS EWADC19C-XS EWADC20C-XS EWADC21C-XS EWADC22C-XS
Sound pressure level Cooling Nom. dBA 80 80 80 80 81 80 80 80 80 80 81 81 81 81 81 81 81
Operation range Air side Cooling Min. °CDB -18 -18 -18   -18   -18
      Max. °CDB 50 50 50   50   50
  Water side Cooling Max. °CDB 15 15 15   15   15
      Min. °CDB -8 -8 -8   -8   -8
Refrigerant charge Per circuit kg 75.0 81.0 81.0   100.0   117.5
  Refrigerant charge-=-Per circuit-=-TCO2Eq TCO2Eq 107.3 115.8 115.8   143.0   168.0
Compressor Type   Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor
  Starting method         Wye-Delta   Wye-Delta   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
  Quantity   2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
Weight Operation weight kg 6,240 6,580 6,600 7,600 7,870 8,610 8,630 9,890 9,890 9,890 12,430 12,760 13,140 13,470 13,470 13,470 13,470
  Unit kg 5,990 6,340 6,360 7,190 7,470 8,220 8,240 8,900 8,900 8,900 11,570 11,900 12,260 12,600 12,600 12,600 12,600
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum
EER 3.17 (1) 3.22 (1) 3.14 (1) 3.203 3.12 (1) 3.246 3.15 (1) 3.229 3.125 3.131 3.118 3.104 3.095 3.091 3.062 3.004 2.953
ESEER 3.77 3.92 3.81   3.84   3.86
Refrigerant GWP   1,430 1,430 1,430   1,430   1,430
  Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  Circuits Quantity   2 2 2   2   2
  Charge kg       182   230   250 291 250 297 248 310 327 340 360 360
Cooling capacity Nom. kW 752 (1) 827 (1) 885 (1) 996.8 1,069 (1) 1,192 1,276 (1) 1,343 1,412 1,519 1,589 1,677 1,760 1,849 1,895 1,947 2,002
Water heat exchanger Water volume l 251 243 243   403   386
  Type   Single pass shell & tube Single pass shell & tube Single pass shell & tube   Single pass shell & tube   Single pass shell & tube
Power input Cooling Nom. kW 237 (1) 256 (1) 282 (1)   343 (1)   404 (1)
Sound power level Cooling Nom. dBA 100 101 101 101 102 102 103 103 103 103 103 104 104 104 104 104 104
Dimensions Unit Width mm 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285
    Depth mm 6,285 7,185 7,185 8,085 8,085 9,885 9,885 9,885 9,885 9,885 12,085 12,985 13,885 14,785 14,785 14,785 14,785
    Height mm 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
Capacity control Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 7 7 7 7 7 7 7
  Method   Stepless Stepless Stepless Fixed Stepless Fixed Stepless Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed
Fan Air flow rate Nom. l/s 64,131 74,819 74,819   85,508   106,885
  Speed rpm 900 900 900   900   900
Compressor Starting method   Wye-Delta Wye-Delta Wye-Delta   Wye-Delta   Wye-Delta
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage range Max. %       10   10   10 10 10 10 10 10 10 10 10 10
    Min. %       -10   -10   -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Unit Max unit current for wires sizing A       733   884   955 1,013 1,072 1,196 1,275 1,354 1,432 1,491 1,549 1,608
  Starting current Max A       923   1,029   1,029 1,072 1,085 1,268 1,328 1,387 1,387 1,430 1,472 1,486
  Running current Cooling Nom. A       511   607   686 731 778 835 885 934.0 984 1,018 1,059 1,100
    Max A       672   811   875 929 982 1,096 1,168 1,241 1,313 1,366 1,419 1,473
Notes (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511
  (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 %
  (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water
  (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
Power input Cooling Nom. kW       311.3   367.3   415 451.9 485.2 509.9 540.5 568.9 598.4 619.1 648.3 678
IPLV       4.5   4.5   4.6 4.71 4.81 4.58 4.59 4.51 4.53 4.57 4.42 4.47
SEER       4.1   4.3   4.2 4.2 4.3 4.1 4.1 4.1 4.1 4.1 4.1 4.1
Casing Colour         Ivory white   Ivory white   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material         Galvanized and painted steel sheet   Galvanized and painted steel sheet   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Fan Quantity         16   20   20 20 20 24 26 28 30 30 30 30
  Type         Direct propeller   Direct propeller   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
Fan motor Drive         DOL   DOL   DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL
Operation range Air side Cooling Min. °CDB       -18   -18   -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
      Max. °CDB       50   50   50 50 50 50 50 50 50 50 50 50
  Water side Evaporator Min. °CDB       -8   -8   -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
      Max. °CDB       15   15   15 15 15 15 15 15 15 15 15 15
Refrigerant GWP         1,430   1,430   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity         2   2   2 2 2 3 3 3 3 3 3 3
Piping connections Evaporator water inlet/outlet (OD)         219.1mm   219.1mm   273mm 273mm 273mm 273mm 273mm 273mm 273mm 273mm 273mm 273mm