Specifications Table for EWAT-B-XR

EWAT085B-XRA1 EWAT085B-XRB1 EWAT115B-XRA1 EWAT115B-XRB1 EWAT145B-XRA1 EWAT145B-XRB1 EWAT180B-XRA2 EWAT180B-XRB2 EWAT185B-XRA1 EWAT185B-XRB1 EWAT200B-XRA2 EWAT200B-XRB2 EWAT220B-XRA2 EWAT220B-XRB2 EWAT230B-XRA1 EWAT230B-XRB1 EWAT250B-XRA2 EWAT250B-XRB2 EWAT280B-XRA2 EWAT280B-XRB2 EWAT300B-XRA1 EWAT300B-XRB1 EWAT310B-XRA2 EWAT310B-XRB2 EWAT320B-XRA2 EWAT320B-XRB2 EWAT360B-XRA1 EWAT360B-XRB1 EWAT370B-XRA2 EWAT370B-XRB2 EWAT430B-XRA2 EWAT430B-XRB2 EWAT470B-XRA2 EWAT470B-XRB2 EWAT540B-XRA2 EWAT540B-XRB2 EWAT600B-XRA2 EWAT600B-XRB2 EWAT660B-XRA2 EWAT660B-XRB2 EWAT700B-XRA2 EWAT700B-XRB2
Cooling capacity Nom. kW 81.68 82 108.36 109 135.38 136 167.75 168 165.77 166 187.07 188 207.97 208 223.94 225 238.24 238 264.17 265 284.03 285 283.97 285 301.05 302 327.53 329 345.32 346 393.29 394 437.99 440 500 502 569.48 572 618.9 621 656.69 659
Capacity control Method   Staged Step Staged Step Staged Step Variable Step Staged Step Variable Step Variable Step Staged Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step
  Minimum capacity % 50 50 38 38 50 50 25 25 38 38 21 21 19 19 50 50 17 17 16 16 24 24 14 14 22 22 33 33 19 19 17 17 25 25 14 14 12 12 11 11 17 17
Power input Cooling Nom. kW 30.9 30.8 39 38.9 47 46.9 59.1 59.1 70.5 70.5 69.8 69.8 80.7 80.7 79.2 79.2 86.4 87.3 92.2 92.2 104 105 103 103 114 115 121 121 130 130 146 147 163 163 188 190 207 207 224 224 242 242
EER 2.64 2.66 2.78 2.79 2.88 2.89 2.84 2.84 2.35 2.36 2.68 2.69 2.58 2.58 2.83 2.84 2.76 2.73 2.87 2.87 2.71 2.72 2.76 2.76 2.63 2.63 2.7 2.71 2.66 2.67 2.68 2.69 2.68 2.69 2.66 2.64 2.74 2.76 2.76 2.77 2.71 2.72
ESEER 4.02   4.18   4.08   4.24   4.04   4.21   4.17   4.16   4.15   4.34   4.31   4.12   4.04   4.24   4.15   4.15   4.12   4.2   4.21   4.25   4.23  
Dimensions Unit Depth mm 2,660 2,660 3,180 3,180 3,780 3,780 2,326 2,326 3,780 3,780 2,326 2,326 2,326 2,326 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 4,126 4,126 4,126 4,126 4,126 4,126 5,025 5,025 5,025 5,025 5,874 5,874 6,774 6,774 6,774 6,774
    Height mm 1,801 1,801 1,801 1,801 1,822 1,822 2,540 2,540 1,822 1,822 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 1,204 1,204 1,204 1,204 1,204 1,204 2,236 2,236 1,204 1,204 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236
Weight Operation weight kg 752 752 846 846 968 968 1,743 1,747 1,088 1,088 1,773 1,777 1,801 1,813 1,997 2,098 2,066 2,104 2,209 2,250 2,234 2,338 2,241 2,281 2,277 2,318 2,614 2,751 2,655 2,821 2,848 2,916 3,268 3,421 3,497 3,675 3,916 4,148 4,290 4,550 4,432 4,692
  Unit kg 744 747 837 840 961 959 1,732 1,736 1,072 1,076 1,763 1,766 1,790 1,802 1,977 2,082 2,054 2,090 2,192 2,231 2,212 2,318 2,220 2,262 2,247 2,299 2,590 2,731 2,627 2,801 2,811 2,888 3,237 3,393 3,458 3,633 3,873 4,106 4,248 4,500 4,396 4,642
Water heat exchanger Type   Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate
  Water volume l 5 5 6 6 9 9 11 11 12 12 11 11 11 11 16 16 14 14 19 19 20 20 19 19 19 19 20 20 20 20 28 28 28 28 42 42 42 42 50 50 50 50
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Air flow rate Nom. l/s 6,673 6,673 8,896 8,896 11,122 11,122 15,054 15,054 11,122 11,122 15,054 15,054 15,054 15,054 18,819 18,819 18,818 18,818 22,582 22,582 22,582 22,582 22,582 22,582 22,582 22,582 26,346 26,346 26,346 26,346 30,110 30,110 33,874 33,874 37,637 37,637 45,164 45,164 48,928 48,928 52,692 52,692
  Speed rpm 1,108 1,108 1,108 1,108 1,108 1,108 700 700 1,108 1,108 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700
Compressor Quantity   2 2 2 2 2 2 4 4 2 2 4 4 4 4 2 2 4 4 4 4 3 3 4 4 4 4 3 3 4 4 4 4 4 4 5 5 6 6 6 6 6 6
  Type   Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor
Sound power level Cooling Nom. dBA 77.9 77.9 (1) 81.9 81.9 (1) 84 84 (1) 84.2 84.2 (1) 86 86 (1) 84.5 84.5 (1) 84.8 84.8 (1) 86.2 86.2 (1) 85.8 85.8 (1) 86.6 86.6 (1) 87 87 (1) 86.7 86.7 (1) 86.9 86.9 (1) 87.7 87.7 (1) 87.6 87.6 (1) 88.3 88.3 (1) 88.9 88.9 (1) 89.3 89.3 (1) 90 90 (1) 90.4 90.4 (1) 90.7 90.7 (1)
Sound pressure level Cooling Nom. dBA 60.2 60.2 (1) 63.9 63.9 (1) 65.6 65.6 (1) 65.3 65.3 (1) 67.7 67.7 (1) 65.5 65.5 (1) 65.8 65.8 (1) 66.7 66.7 (1) 66.3 66.3 (1) 67.1 67.1 (1) 67.5 67.5 (1) 67.2 67.2 (1) 67.4 67.4 (1) 67.8 67.8 (1) 67.7 67.7 (1) 68.3 68.3 (1) 68.5 68.5 (1) 68.9 68.9 (1) 69.2 69.2 (1) 69.3 69.3 (1) 69.6 69.6 (1)
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32
  GWP   675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675
  Circuits Quantity   1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
  Charge kg 10.5 9 12.5 10 15 11 30 12 16 20 36 20 37 20 30 23.5 42 24 48 27.5 36 28 50 28 52 27.5 50 32 58 31 62 36 70 43.5 78 49 80 55 92 60 100 66
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400  
Compressor Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only
  (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
  (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level.
  (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
  (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water
  (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current
  (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current.
  (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options.
  (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
    (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.